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The applicability of the complete and modified systems of Burnett’s equations for problems on the structure of a strong shock 
wave in a binary mixture of monatomic gases are investigated. The results of calculations using the establishment method are 
compared with the results of calculations based on the Navier-Stokes equations and results obtained by direct statistical modelling. 
The limiting laws of intermolecular interaction (Maxwellian molecules and molecules treated as elastic spheres) are used. 
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Models of the structure of a shock wave and hypersonic flow, based on Burnett’s equations, are ,widely 
used [l--6]. In order to suppress the so-called short-wave instability, additional damping terms have been 
introduced [l, 4,5] which, however, increase the order of the system of equations and their complexity. 
It was found [2,3] that the well-known “defects” of Burnett’s equations can be eliminated with sufficient 
accuracy by simplifying and modifying them. In applications, high-temperature flows of gas mixtures 
are of the greatest interest [6]. The approach described earlier in [2, 31 is extended below to a binary 
gas mixture; Burnett’s equations for this case are only applicable to certain linear problems [7, 81. A 
derivation of Burnett’s equations for a multicomponent mixture of monatomic gases has recently been 
given in [9, lo], and the necessary “working” expressions for the Burnett transport coefficients of a binary 
mixture of monatomic gases have been obtained [lo]. 

The main aim of this paper is to continue the investigation of the mathematical properties, accuracies 
and limits of applicability of a modification of the system of Burnett’s equations. The “defects”’ in this 
system of equations consist not only in the formulation of the boundary conditions (on account of the 
increased order of the system) and its instability: within the framework of the Navier-Stokes equations, 
it has been proved in [ll] that, in the case of an infinitely high Mach number in front of the wave, M, 
there is a leading shock wave front in the gas in which the derivatives undergo discontinuities. This 
imposes additional requirements on the numerical algorithms in the case of large, but finite M (this is 
associated qualitatively with the fact that the temperature ahead of the front and, consequently, the 
transport coefficients are equal to zero and, therefore, what has been said also holds for other 
macromodels). According to kinetic theory, such a front does not exist on account of the perturbing 
action of “fast” molecules which create the leading “wedge” structure of a shock wave. This manifests 
itself to the greatest extent in the case of Maxwellian molecules and, to the least extent, in the case of 
elastic spheres. 

In the case of flows of gas mixtures, the question of the techniques used for the macroscopic description 
in the case of different ratios of the masses of the molecules is important. It follows from kinetic theory 
[12,13] that, generally speaking, a two-temperature (and, possibly, a two-fluid) descriptionl is necessary 
in the case of large values of this ratio. As previously in [9, lo], single-temperature Burnett models are 
considered below. 

1. INITIAL RELATIONS 

The conservation equations for a binary mixture of monatomic gases in divergent form are 

L 
0 

= ?!?+apu, =.o 
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(where summation from 1 to 3 is carried out with respect to repeated Greek subscripts). 
The notation from [9, lo] is used: the subscripts i, j = 1,2 are the numbers of the components of the 

mixture, the projections of the radius vector r are introduced by means of the subscripts cr,, p ad y, u is 
the mean mass velocity, IZ~, pi = mini, mi, pi = nikT, and Vi are the number and mass densities, the mass 
of the molecule, the pressure and the diffusion rate of the ith component, p = pr i- p2, IZ = nl + n2, 
p = nkT are the mass and number densities and the pressure of the mixture. T is the temperature, 7torp 
are the components of the solenoidal stress tensor and h, is a component of the reduced heat flux. The 
formula V, = -(p1/p2)V1 is used. 

Putting 

in the first three equations of (l.l), we obtain a system of conservation equations in the Navier-Stokes 
approximation (for brevity, simply the Navier-Stokes equations). Here, 

k, = x,x,(m,- m,,;, 
ni 

xi = - 
n 

(1.3) 

In relations (1.3), Eb12, n, h and kr are the coefficients of binary diffusion, viscosity, heat transfer and 
thermal diffusion ratio, respectively [lo], and kp is the coefficient of barodiffusion. 

We obtain Burnett’s equations by putting [lo] 

Following a previously described procedure 131, we decompose the Burnett contributions into the 
transport properties 

We then write the Burnett contributions to the stresses in the form 

(1.5) 
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As previously in [lo], we combine the expressions for the contributions to the vector transport 
properties, writing them more compactly as 

(1.8) 

Definitions (1.3) for the operator (.) and the coefficient kp, and the expressions x2 = 1 - x1, 
dti = -dl,, Vu = &,/&, have been used in formulae (1.6)-(1.9). 

The expressions for ht and h:, are obtained from expressions (1.8) and (1.9) by means of the 
substitution [lo] 

(AZ, Ah) + (ht, h:), cp, + yrn, 6cp,* -+ 6y,*, m = I, 2, . . . . 9 (1.10) 

(the magnitude of S$ is given by formula (4.4) in [9]) and the expressions for V<‘, and V& are obtained 
by means of the substitution 

The system of truncated Burnett equations, taking account of relations (l.l)-(1.11) has the form 

L, = 0, L; = 0, z& = 0, L,; = 0 (1.12) 

The expressions for Li, Li, and Lo3 are obtained from L1, Lza and L3, defined by formulae (1 .l), by 
means of the substitution 

(1) A (1) A (v,,, nap, ha) = (V,, + VI,, %P + %p h;) + h;) (1.13) 

Hence, only those terms of the Burnett transport properties containing paired products of the first 
derivatives of the components of the velocity vector, temperature and concentrations, which do not 
increase the order of the system compared with order of the Navier-Stokes equations, are included in 
the system of truncated Burnett equations. 

The system of inhomogeneous truncated Burnett equations has the form 

(1.14) 

The right-hand sides of Eqs (1.14) are calculated for the solution of system (1.12). The complete 
system of Burnett equations is obtained if the zero subscript in the last three equations of (1.14) is 
omitted. 

In the one-dimensional case, we use the notation rl = x, u, = u. The x axis is directed along the flow 
and the conditions x = --M correspond to the conditions in front of the shock wave. 

Formulae (1.6) and (1.7) reduce to the form (a prime denotes a partial derivative with respect tox) 
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(1.15) 

The “working” expressions for \,(n = 1, 2, ,.. , 12) are given by the right-hand sides of formulae 
(3.2) in [lo]. Th e q uantity Sc;i‘z is calculated using formulae (4.4) of [9]. Formulae (1.8) and (1.9) reduce 
to the form 

(1.16) 

(1.17) 

In order to obtain @[(k = 1, 2, 3, 4), it is necessary to replace ym and S, in expressions (1.17) in 
accordance with (1.10) and (1.11). The “working” expressions for the coefficients y and 6 are calculated 
using the right-hand sides of formulae (3.4) and formulae (3.6) and (3.10) of [lo]. The final formulae 
for CD;, @and the coefficients in (1.15) are lengthy and are not presented here. 

2. NUMERICAL METHODS 

Earlier in [2], in order to calculate the structure of a strong shock wave in a simple gas, steady-state 
systems of one-dimensional modified Burnett equations were integrated upwards along the flow from 
the neighbourhood of the singular point when x = 00. However, this technique is inapplicable in the 
case of the complete system of Burnett equations on account of the well-known properties of its singular 
points, and the establishment method [l, 41 is therefore used. Moreover, the analysis of the singular 
points is significantly more difficult in the case of a gas mixture. 

The numerical solution is constructed in a uniform, one-dimensional mesh. The following 
procedures are used when choosing the initial approximation. In the case of the system of Navier-Stokes 
equations when t = 0, a shock wave in the form of a compression shock of infinitesimal thickness is 
placed in the middle of the control volume (the number of cells is chosen to be even). The solution of 
this system is used as the initial approximation for the system of truncated Burnett equations (1.12) 
(here and below, the corresponding systems of one-dimensional equations must be borne in mind) with 
the same boundary conditions. It is possible to use both approaches in the case of the complete system 
of Burnett equations (or for system (1.14) when M < 11) but the calculations are carried out in several 
stages: a coarse mesh is used in the first stage and the solution obtained in the first stage is used as the 
initial solution in the second stage but the number of cells is increased by a factor of two, and so on 
(see Section 3). An analogous procedure is used to solve the system of truncated Burnett equations 
(1.14) when it4 > 11, but the solution of system (1.12) is ehosen as the initial solution. Boundary 
conditions, corresponding to the free stream, are imposed on the boundary of the computational domain, 
the pressure is fixed on the other boundary and an extrapolation of the boundary conditions is used 
for the other parameters (the temperature, velocity, density and concentration of a component). 

A “kinetically matched” difference scheme [14], employing well-known procedures for correcting flo-ws 
which are used to construct schemes analogous to that described previously in [15], was used to 
approximate the convective terms of the system of equations. For smooth solutions, the scheme, which 
has been corrected in this manner, has an increased (above the first) order of approximation. A central 
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difference scheme of the second order of accuracy was used to approximate the viscous terms of the 
equations but, in certain calculations, the order of approximation was increased up to the fourth order 
in order to ensure the stability of the system of inhomogeneous truncated Burnett equations (1.14). 
The empirical formula [16]. 

AtIa AxCu 

u( 1 + 2Re-I)’ 
Re = P& 

11 

was taken as the stability condition for the proposed scheme, where the safety factor a = 0.7, the Courant 
number Cu =Z l/2, the spatial step AX G l/31,1 is the minimum mean free path in the computational 
domain, u is the local velocity in the cell and Re is the mesh Reynolds number. 

The problem being treated was also solved by the method of direct statistical modelling using a well- 
known algorithm [17]. At the initial instant of time, the shock wave in the form of a compression shock 
of infinitesimal is placed in the middle of the control volume. The steady-state distribution of all the 
parameters of the medium is calculated after the establishment of the process in time. In order that 
the shock should be steady, new particles are introduced into the control volume through a given segment 
of the boundary such that, in this segment, the time-averaged flows of the substance, the momentum 
and energy are equalized to their theoretical values [17]. In order to model the collisions of the particles, 
an algorithm [18] was used which ensures the necessary frequency of the collisions and minimization 
of the volume of the calculations. In order to test the proposed techniques, comparisons with known 
results [Z&3,17] were made. For the case of Maxwellian molecules, the VHS-model[17] (the molecules 
are elastic spheres of variable diameter) was used for a characteristic temperature equal to 273 K. The 
mean free path ahead of the shock wave 

The diameter of the “pseudosphere”, d,, of the VHS-model is expressed in terms of its parameters 
[17]. The Mach number in front of the wave 

M=L, a2= 5n 
-kT_, 

a 3P- 
T_=T(x=-00) = 273K (2.2) 

The dimensionless variables 

x* = x T” = T(x*)-V---l ps = P(X*)-PC--) * _ x1(x*)-x,(-=) 
1’ T(m) - T(-m) ’ p(co)-p(_m)’ x1 - x,(-m) (2.3) 

are used. 

3. THE MATHEMATICAL FEATURES OF BURNETT MODELS 

The mathematical theory of Burnett’s equations and their modifications has not been developed and 
proofs are of a semi-empirical numerical character. In particular, a sufficiently complete analysis of 
questions concerning stability has not been carried out. 

The short-wave instability of Burnett’s equations has been discussed in which the numerical establishment method 
has been used [4]. When the mesh is finely subdivision, pulsations set in and the solution breaks up. In order to 
suppress this instability, semi-empirical damping terms were introduced, which have only an insignificant effect 
on the solution, and, as a result, a system of modified Burnett equations was obtained. Results of calculations using 
this system on a fine mesh and the initial system of Burnett’s equations on a coarse mesh, that is, on a mesh which 
is close to an “unstable” mesh, have been presented in [4]. The data are practically identical throughout the thickness 
of shock wave up to M = 50, and with respect to the temperature profile along the critical line for hypersonic flow 
about a circular cylinder in the case of a small rarefaction. These and other data are responsible for the assertion 
that the inclusion of additional damping terms in Burnett’s equations was mainly due to the transition to two- and 
three-dimensional flow problems [4]. 
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The systematic calculations carried out using the techniques employed here demonstrated the practical 
convergence of the solution of Burnett’s equations on the coarse mesh. For example, in the case of 
Maxwellian molecules when iV = 25, rn.2 = 2ml, dll = d22, x1(--) = l/2, we have 

T* = (0.07, 0.03, O.OO), (0.21,0.16,0.14), (0.39,0.38,0.37) 

forx* = -50, -40, -30 respectively. The last of the values enclosed in brackets were obtained for a value 
of the step size A*x, which is close to the “unstable” value, the second values were obtained for 
Ax = 2A,x and the first for Ax = 4A,x. Changes occur in the third symbol. In the remaining part of 
the shock wave, the convergence is approximately the same as for x” = -30. 

By virtue of what has been said, we shall assume, for qualitative purposes, that the “established” results 
of calculations on a coarse mesh, close to an unstable mesh, are the solution of the system of Burnett 
equations. 

However, the fact (see the introductory part of this paper) that, when M = 00, the domain of the 
perturbed flow is separated from the uniform free stream by a front on the surface of which the 
derivatives are discontinuous, that is fundamental in the theory of macromodels of the structure of a 
shock wave, has not been discussed. The position of the front is different for different models. If the 
x coordinate is measured from the front along the flow, then, up to the front (when x < 0), the 
temperature T and the pressurep are equal to zero and, when x = +O, we have [ll] (T,p) - x”‘~ where 
PI is exponent for the temperature-dependence of the gas viscosity coefficient. This feature is most 
significant in the case of Maxwellian molecules when 12 = 1 (for molecules which are elastic spheres, 
n = l/2). 

At higher, but finite, values of&‘, this surface becomes blurred, passing into a zone where there sharp 
increase in the derivatives, which is more pronounced the greater the order of the derivatives. 

The following remarks are associated with the selection of the basis in which the iterative method 
for solving the system of Burnett’s equations is set up [2, 31, that is, with the solution of the problem 
of which Burnett terms have to be retained in Eqs (1.12). 

It was initially proposed in [2] not to include only the terms 7c, and qX, which contain the second 
derivatives of T and u (in order to eliminate short-wave instability and to reduce the order of the system 
of equations to the order of the Navier-Stokes equations; the density was eliminated in the once 
integrated steady-state Burnett equations). However, in the case of integration upstream along the flow 
adopted in [2, 31, the values ofx, where the state of the flow is sufficiently close to the limiting state, 
could sometimes not be successfully reached. This “defect” was removed by the transfer of the term 
7c,, containing Tf2, into the inhomogeneous part [2]. This approach was refined and generalized in [3]. 
The question concerning this transfer was analysed again using the establishment method, employed 
here. The term 2/&Tf2 was taken into account in n& that is, in the truncated Burnett equations, which 
led to the occurrence of pulsations in the leading part of the shock wave, As M increases, the extent 
of the pulsation domain becomes larger and a monotonic solution is only obtained on a coarse mesh. 
Meanwhile, the term being considered has a weak effect on the solution. The transfer of the term into 
the inhomogeneous part liquidates the pulsations. 

Analogous effects also occur in the case of Eq. (1.14) due to the extreme non-linearity of the right- 
hand sides of these equations. 

The transfer of the term containing xi2 into 7t.s . 1s not of great significance since the changes in xi 
within the shock wave are small compared with the change in T or p. The terms A& containing xi, have 
only a small effect on the solution, The results of the calculations presented here were obtained without 
taking account of these terms in A!. 

When the damping terms [4,5] are added to Burnett’s equations, not only is the short-wave instability 
liquidated but, also, the indicated domain of pulsations is apparently “smeared out”, although this latter 
fact was not even discussed. The numerical techniques adopted are sufficient for the purposes of this 
paper. 

4. THE APPLICABILITY OF BURNETT MODELS 

The results of calculations, obtained for the cases of Maxwellian molecules (a) and molecules which 
are elastic spheres (b) using the method of direct statistical modelling (the small crosses), the systems 
of Navier-Stokes equations (the dark points), Burnett’s equations (the small circles), the truncated 
Burnett equations (the solid curves) and the inhomogeneous truncated Burnett equations (the dashed 
curves) are shown in Figs l-3. The notation is given by formulae (2.1)-(2.3). Everywhere, M = 11 (the 
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-30 -20 -10 0 X* 

Fig. I 

-6 -4 -2 0 X* 

Fig. 2 

-80 -40 0 X* 
Fig. 

-6 -4 -2 0 X* 

3 

traditional value for this problem [l-3]), dII = dz2 andq(-m) = t/z. Calculations were carried out for 
different values of the parameters and the most characteristic results are presented. A change in A4 
from five and above has no effect on the conclusions reached. 



64 V S. Galkin and S. V. Rusakov 

The data in Figs 1 and 2 were obtained for m2/ml = 2. These and the other results of the calculations 
enable US to draw the following conclusion (we recall that u - l/p): in the case of small relative 
differences in the masses and diameters of the molecules, the conclusions concerning the accuracy of 
the models for the TX and p* profiles are qualitatively the same as in the case of a simple gas [2, 31: 
Burnett’s equations basically refine the Navier-Stokes equations, that is, they give results which are far 
closer to the results obtained using the method of direct statistical modelling. The results of calculations 
carried out within the framework of the inhomogeneous truncated Burnett equations (1.14) and within 
the framework of Burnett’s equations are found to be close. 

The fact that the data presented here were obtained using the truncated Burnett equations (1.12) is 
the principal difference from the results obtained previously [2,3]. In the case of Maxwellian molecules, 
the truncated Burnett equations are even more accurate than the complete system of Burnett’s equations 
in the leading part of the shock wave (Fig. 1). In the dense part of the shock wave, they are close to 
the Navier-Stokes equations. However,here, the difference between the results of calculations using 
the truncated Burnett equations and a calculation using the method of direct statistical modelling is 
about 10%. The fact [4, 51 that, in the flow problems, the results provide Burnett’s equations are 
considerably more accurate than the results of calculations using the Navier-Stokes equations for the 
temperature precisely in the leading part of the wave is important. The above-mentioned “defects” in 
the stability and action of the domain of pulsations are not characteristic of the truncated Burnett 
equations. In the case of a simple gas, the singular points and, in general, the phase pattern of the 
structure of the shock wave are the same as in the case of Navier-Stokes equations [3]. In other words, 
the fundamental properties of the truncated Burnett equations are close to those of the Navier-Stokes 
equations. 

In the light of what has been said, it is possible to simplify the algorithm [3] for constructing non- 
Navier-Stokes models by separating out the truncated Burnett equations as the basic model and 
simplifying it by transferring a number of the terms (containing derivative of x1) to the following iteration. 
Of course, a somewhat different structure of the basic system of truncated Burnett equations may be 
more effective for other classes of problems. 

The relative changes in the concentrations are far smaller than the changes in T* and p”, and, 
moreover, they depend strongly on the parameters of the problem. Increased requirements on the 
accuracy of the calculation of zc&*), including also on the method of direct statistical modelling, are 
necessary. The data obtained for the case of Maxwellian molecules in Fig. 2(a) demonstrate the 
advantages of Burnett models compared with Navier-Stokes modelling in the leading part of the 
shock wave. However, in the case of molecules which are elastic spheres (Fig. 2b), there are in fact 
no such advantages. The distinguishing feature of Burnett models is the non-monotonic&y of the 
concentration profiles, which is particularly pronounced in the case of the complete system of Burnett’s 
equations. 

As m2/m1 increases the conclusions which have been reached concerning the advantages of Burnett 
models no longer hold (Fig. 3). In the case of Maxwellian molecules when mz/ml = 100, the Burnett 
and Navier-Stokes profiles of T* and p* almost merge (hence only the results of calculations within 
the framework of the truncated Burnett equations and the Navier-Stokes equations are therefore shown 
in Fig. 3a). The difference between the Navier-Stokes profiles and the result of a calculation using the 
method of direct statistical modelling is significantly less than in Fig. 1. 

The applicability of Burnett models deteriorates in the case of molecules which are elastic spheres. 
According to the complete system of Burnett’s equations, the domain of perturbed flow has expanded 
considerably when m2/ml = 10 (Fig. 3b). The truncated Burnett equations give acceptable results here. 
However, when mz/ml = 100, they give much worse agreement with the results of the method of direct 
statistical modelling than the Navier-Stokes equations (particularly, for 7”). 

For XT at high m2/m1, similar conclusions on the accuracy of Burnett models hold. 
Hence, using the limiting laws of intermolecular interaction, general conclusions have been drawn 

regarding the accuracy of Burnett models when there are small relative differences in the masses of 
the molecules (in particular, when mz/ml = 2) which are similar to the case of a simple gas. When there 
are considerable differences in the masses of the molecules, the areas of applicability of macromodels 
depend fundamentally on the interaction law adopted, and a corresponding analysis for actual gas 
mixtures is required. 
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